

SANGFOR

Hyper -Converged Infrastructure

White Paper

Sangfor Technologies Co., Ltd

Oct 2 nd , 2015

Copyright

The copyright is held by Sangfor Technologies Co. Ltd. All rights reserved.

The pertinent materials include but are not limited to the following: text description,

icon, format, figure, photo, method, procedure, and so on, unless otherwise stated.

Without prior written permission of Sangfor Technologies Co. Ltd, no part of the

contents in this document shall be reproduced, excerpted, stored, modified,

distributed in any form or by any means, and translated to any other languages,

applied for a commercial purposes in whole or in part .

Disclaimer

This document was prepared by Sangfor Technologies Co. Ltd. The information

obtained herein is provided on an 'as available' basis. Sangfor Technologies Co. Ltd

may make improvement or changes in this document, at any time or without notice.

The information is believed to be accurate. However, Sangfor shall not assume

responsibility or held liable for any loss or damage resulting from omissions,

inaccuracies or errors contained herein.

Contact Us

For any feedback or suggestion, please contact us through the following:

Address: iPark, A1 Building, Xueyuan Bvld 1001, Nanshan District, Shenzhen,

Guangdong, PRC

Postcode: 518055

Tel: +86 755 26581949

Fax: +86 755 26581959

Website: www.sangfor.com

Abbreviation

Abbr. Full Name

Hypervisor Hypervisor

VMM VMM Virtual Machine Manager

HA High Availability

vMotion vMotion

DRS Distributed Resource Scheduler

RAID Redundant Arrays of Independent Disks

IOPS Input/Output Operations Per Second

VM Virtual Machine

SDN Software Defined Network

NFV Network Function Virtualization

Revisions

Version Drafted by Date Remarks

V1.0
Xiao

Xiandong
2015 -10

SANGFOR HCI WHITE PAPER

Table of Contents

1. PREFACE ... 1

1.1 THE IT RVOLUTIONS ... 1

1.2 SANGFOR HCI WHITE PAPER AT A GLANCE ... 3

2. SANGFOR HCI SOLUTION .. 4

2.1 HYPER-CONVERGED INFRASTRUCTURE (HCI) OVERVIEW ... 4

2.2 SANGFOR HCI ARCHITECTURE .. 4

2.3 ASV (SERVER VIRTUALIZATION) .. 5

2.3.1 aSV Overview ... 5

2.3.2 aSV Technical Principle ... 6

2.3.3 aSV Technical Features ... 18

2.3.4 aSV Special Tech nologies .. 24

2.4 ASAN (STORAGE AREA NETWORK) ... 28

2.4.1 Storage Virtualization Overview .. 28

2.4.2 aSAN Working Principle ... 30

2.4.3 aSAN Storage Data Reliability Safeguard .. 42

2.4.4 aSAN Key Features .. 49

2.5 ANET (NETWORK) ... 51

2.5.1 aNET Overview .. 51

2.5.2 aNET Working Principle ... 52

2.5.3 aNET Network Functions .. 58

SANGFOR HCI WHITE PAPER

2.5.4 aNET Special Technology Features .. 60

3. INTRODUCTION TO SANG FOR HCI .. 62

3.1 PRODUCT OVERVIEW .. 62

3.2 MODEL RECOMMENDATIONS ... 62

4. CORE VALUES OF SANGFOR HCI ... 64

4.1 RELIABILITY .. 64

4.2 SECURITY ... 64

4.3 FLEXIBILITY .. 64

4.4 OPERABILITY .. 64

5. BEST PRACTICE S ... 65

SANGFOR HCI WHITE PAPER

1

1. Preface

1.1 The IT Evolution s

ince the 1990s of the 20 th century when Windows operating

systems were widely used and Linux operating systems settled the

leading position among x86 system, x86 system deployment has

encountered new inf rastructure and operating bottlenecks because of

its rapid growth, including low infrastructure utilization, increasing

hardware investment costs and IT operational costs, bad application

failover and low disaster recovery capability, and so on.

As perform ance of x86 systems is enhanced day by day, enterprises

could eventually indulge into business investment rather than time

saving and cost control. The major enhancements are, x86 system

becomes generic and shared infrastructure, more hardware potentials

are found, hardware utilization increases greatly, capital investment

and operational costs are reduced dramatically, and system

maintenance becomes simpler.

In addition, cloud computing and virtualization technology are leading

data center development to a new era. Based on virtualization

technology, management and business are centralized, and resources

in data center are allocated and scheduled automatically, both of which

cater enterprises' needs for high performance, reliability, security and

adaptivity during crucial application migration to x86 platforms.

Meanwhile, both trends are making infrastructure management more

adaptive and automated to catch up with the fast business growth and

increasing cloud solutions.

Cloud computing is not a brand new tec hnology, but a solution coming

into existence due to new drivers.

Traditionally, in order to provision new services, enterprises have to

S

SANGFOR HCI WHITE PAPER

2

start from networking plan and scale, choosing hardware models,

making an order, paying their hardware supplier, making shipment,

installing software, deploying hardware, and end by doing debugging.

The whole purchase and deployment cycle often takes up to weeks or

months, for a large -scale project, which, however, could be shortened to

minutes with the help of cloud compu ting.

Moore's Law describes that chip performance would double every 18

months. Reverse Moore's law observes that as processors become faster

and memory becomes cheaper, software becomes correspondingly

slower and more bloated, using up all available resou rces. If software

vendors become correspondingly slower and unable to catch up with

the pace, they will be left behind in IT industry. IT industry is full of

fierce competitions. Making use of cloud com puting can upgrade

efficiency of the IT infrastructure, but slows down product improvement

or service development without.

Nowadays, we are amidst an enterprise -grade data center evolution

that is only seen in decades, driven by the breakthrough of the

'software -definedõ infrastructure. Computing capacity, networking and

storage could be virtualized, allocated, and re -allocated, without any

compromise with static hardware infrastructure. Software -Defined

Data Center (SDDC) enables enterprises focus on appl ication, while IT

resource scheduling is accomplished accordingly by the software

dynamically.

Sangfo r HCI Platform is a mature SDDC solution. In additio n to the

common functionality, virtualization, standardization, automation, it

boasts another four characteristics, simplicity, usability, security and

reliability.

SANGFOR HCI WHITE PAPER

3

1.2 Sangfor HCI White Paper at a Glance

ɆAn overview of cloud computing and cloud platform,
and a guide on reading this document

ɆThe major functionality of HCI technology

ɆIntroduction to Sangfor HCI

ɆThe core values that Sangfor HCI brings to
customers

ɆPractice and trial of Sangfor HCI

SANGFOR HCI WHITE PAPER

4

2. Sangfor HCI S olution

2.1 Hyper -Converged Infrastructure (HCI)

Overview

yper -Converged Infrastructure (HCI) is an infrastructure that

combine s computing, networking and storage capabilities onto

industry -standard x86 servers by using virtualization te chnologies. It is

often predefined according to system requirements. All the resources

are aggregated into a resource pool on node basis that is easy to scale

out.

2.2 Sangfor HCI Architecture

 Sangfor Hyper -Converged Infrastructure

s show i n the above figure , the principle components of Sangfor

HCI are: x86 hardware, switches and virtualization layer that

virtualizes computing, storage, networking and security with the

software aSV, aSAN and aNe t respectively, previsioning full

virtualization and all resources for the data center. In later sections, we

shall discuss the technology of aSV, aSAN and aNet in details.

H

A

SANGFOR HCI WHITE PAPER

5

2.3 aSV (Server Virtualization)

2.3.1 aSV Overview

his is a virtualiza tion software used for virtualiz ing computing

capacity of x86 servers, enabling customers to create a wide

variety of standardized virtual machines, which are like computers

provided by one manufacturer, with same hardware configuration or

driver as wan ted.

Definition of Virtual Machine:

A virtual machine is a type of computer application used to create a

virtual environment, which is referred to as "virtualization". Some types

of virtualization let a user run multiple operating systems on one

computer at the same time. A virtual machine can also function for a

single program, allowing that one application to function in an isolated

way. Users can setup multiple computers to function as one through

virtualization, allowing the system to draw on greater r esources than

might otherwise be available.

Virtual Machine vs. Physical Server:

A virtual machine is not made of physical electronic components, but is

composed by a set of virtual components (files), which have nothing to

do with hardware configuratio n. In addition to the differences in

composition, a virtual machine is superior to a physical server in the

following:

Abstraction Decoupling

 Operational on any x86 server

 Upper -level application system is operational without making

any change

T

SANGFOR HCI WHITE PAPER

6

Isolation

 Running is independent from other virtual machines

 No interaction among data processing, networking and data

storage

Great Mobility after Encapsulation

 Virtual machines are encapsulated into one file that is easy to

duplica te, deploy, back up and recover

 Configuration, operation system and application programs of a

virtual machine can be hot migrated as a whole among the

hosts.

Sangfor HCI consis ts of an aSV virtualization platform that virtualizes

physical servers and creates more than one virtual machines. Users

may install software, mount disks, change configuration and

re-connect it like any ordinary x86 server.

Virtualization plays a crucial role in Hyper -Converged Infrastructure

(HCI). For end users, virtual machine is superior to physical server in

distribution, configuration change and networking. For IT operators,

virtual machines can reuse hardware resources, and reduce overall IT

investment and operational costs in conjunction with cloud automation

capab ility.

2.3.2 aSV Technical Principle

 Hypervisor Infras tructure 2.3.2.1

SANGFOR HCI WHITE PAPER

7

A hypervisor, or VMM (Virtual Machine Monitor), is a piece of software

running amidst the physical server and host OS, which enables more

than one operating systems and appl ications share a set of physical

hardware, coordinates accesses to physical components and virtual

machines, creates and runs virtual machines.

Hypervisor is the core of virtualization technology. Its fundamental

capability is to perform hot migration without interrupting any task.

Upon startup of server and hypervisor, every virtual machine will be

allocated with appropriate resources, such as memory, CPU,

networking capability and disks, while guest operating system are

loaded accordingly.

There are two types of hypervisors: Type -I (Bare-Metal) and Type -II

(Host OS -Based)

 Virtualization Infrastructure

Type -I (Bare -Metal)

This type of hypervisor runs directly on top of the host hardware. To

access to the host hardware, Guest OS must have the i nterrupts from

the hypervisor which uses the driver programs and acts like the

immediate manipulator. This layer runs one or more operating system

instances, which is virtualized to some extent.

SANGFOR HCI WHITE PAPER

8

Type-I hypervisor is a lightweight OS that manages and calls hardware

resources, without relying on host operating system. Performance of

this type of hypervisor is between server virtualization and OS -level

virtualization.

Common examples of type -I hypervisor includ e VMware ESX Server,

Citrix XenServer, Micros oft Hyper -V and Linux KVM, etc.

Type -II (Host OS -Based)

This type of hypervisor relies on a host OS. Guest OS requires host OS

to access host hardware, which brings additional performance costs

but makes the best use of the drivers and services provided by the host

OS to manage memory and resources, and schedule process.

The VM application program of server virtualization requires the

following when accessing to host hardware: VM kernel > hypervisor >

host kernel. For that reason, this type of virtualizat ion provisions the

lowest performance.

Common examples of Type-II hypervisor inclu des VMware Server(GSX),

Workstation and Microsoft Virtual PC, Virtual Server, etc.

Having taken into account both performance and efficiency , Sangfor

has chosen Type-I (Bare-Metal) hypervisor and Linux KVM.

KVM (Kernel -based Virtual Machine) is a full virtualization solution for

Linux on x86 system that is integrated in each released version since

Linux2.6.20. It makes use of the Linux sc heduler to perform

management and requires less crucial source code. KVM contains

virtualization extension (Intel VT- X) and is revision of QEMU. It is a

virtualization architecture for the Linux kernel and can be loaded with

the modprobe command, and then create virtual machine with the

corresponding tools. The KVM will accomplish nothing without kernel's

help, for it requires a running userspace tool.

SANGFOR HCI WHITE PAPER

9

Sangfor chooses the mature and open -source QEMU hypervisor that

can virtualize various type s of processo rs. For example, with one

physical processor on an x86 physical server, user can gain a virtual

processor on top of that power, with which another CPU can be encoded

to encode a program running on top of it.

KVM makes use of part of QEMU and improves it before making it

userspace tool that can control KVM. That is the relation between KVM

and QEMU is shown in the following figure:

An ordinary process in Linux can be executed in Kernel mode or User

mode.

KVM supports a third mode, Guest mode, in additio n to Kernel mode

and User mode. In KVM model, each virtual machine is a standard

process managed by Linux scheduler.

In conclusion, KVM consists of two parts, one is the hardware driver

that manages configuration of virtualized dev ices, which takes

/dev/kvm as the management interface; the other is the userspace

component emulating PC hardware, a QEMU process that is revised a

little bit.

More benefits of aSV with KVM:

 Being integrated into Linux released version to improve

compati bility

SANGFOR HCI WHITE PAPER

10

 Source code -grade resource scheduling improves performance

 Virtual machine is like a process whose memory is easy to

manage

 Adopting NUMA technology to improve scalability

 Source codes stay open to have more supports from community

 Implemen tation of aSV Hypervisor 2.3.2.2

VMM (Virtual Machine Monitor) virtualizes three types of physical

resources, namely, CPU, memory and I/O device, among which CPU

virtualization is the key.

Classical Virtualization : In modern computing system, there is

generally two privilege levels (User state and Kernel state, or four

privilege levels Ring0 ~ Ring3 on x86 system) to isolate system software

and application software. The privileged instructions are those highest

privileged instructions in CPU in Kernel mode that c an read or write

commands for key resources. On x86 system, there are some sensitive

commands are not privileged.

If some privileged instruction executions are not performed in Kernel

state, it may incur an exception that is then handled (trapped) by

syste m software as unauthorized access.

The classical way of virtualization uses òde-privileg eó and

òtrap -and -emula teó to make guest OS run in non -privileged level , while

VMM runs in the highest privileged level (having full control of the

syst em resources). Once guest OS is de -privileged, majority of the guest

instructions are executed by the hardware without being trapped and

emulated by VMM unless a privileged instruction is executed.

Trap -and -emulate implementation style is to make VMM emulate the

trapping instructions that may affect VMM operation, but most of the

SANGFOR HCI WHITE PAPER

11

insensitive instructions are executed as usual.

For x86 architecture, there are more than one instructions are sensitive

that need to be handled by VMM, but they are not privi leged. For those

instructions, de -privileging does not make them trapped and emulated

by VMM. As a result, they interrupt instruction virtualization. That is

virtualization vulnerability.

x86 Architecture Virtualization Implementation Types

 x86 full virtua lization

An abstracted VM owns all the attributes of a physical machine, but

guest OS is not required to make any modification. The procedure of

monitor is accomplished during the running process, and

instructions are emulat ed after being trapped. Yet ther e are

differences in implementation among varied virtualization

approaches. VMware is a typical example that uses Binary

Translation (BT), which translates guest OS instructions to subset

of the x86 instructions set, while sensitive calls are set to

automa tically trap. The translation and instruction execution are

performed simultaneously, while insensitive instructions in User

mode are executed without being translated.

 x86 para -virtualization

Para-virtualization requires assistance of OS virtualization an d

modification of OS. It modifies the OS kernel to replace sensitive

instructions with hypercall, similar to the OS calls to move privilege

to VMM. Para -virtualization is widely known due to its application

in VMM.

This technology improves VM performance to the maximum, even

close to that of a physical machine. Its drawback is Guest OS

modification (not supported by Windows platform) and incre asing

maintenance costs. What õs more, modified Guest OS will become

SANGFOR HCI WHITE PAPER

12

dependent on specific hypervisor. For those rea sons, many

virtualization solution suppliers have given up Linux

para -virtualization on VMM based virtualization solution, but turn

to and focus on hardware assisted full virtualization to support

unmodified OS.

 x86 hardware assisted virtualization

The vir tualization concept is to introduce new instructions with a

new CPU execution mode that allows the VMM to run in a new root

mode different from Guest OS. The Guest OS runs in Guest mode,

where privileged and sensitive instructions are set to automatically

be trap ped into the VMM, the difficulty of trapping less privileged

instructions is thus removed . For every mode change, contexts are

saved and restored by hardware, which dramatically improves the

efficiency of context switches during the trap -and -emulate process.

Take hardware assisted virtualization technique based on Intel VT -x

for example, it increases two modes in processor in virtualized state:

Root mode and Non -root mode. VMM runs in Root mode, while

Guest OS runs in Non -root mode. Both modes have p rivileged ring.

VMM and Guest OS run in ring 0 in the two modes respectively. In

that way, VMM is able to run in ring 0, so is Guest OS without being

modified. Switches between Root mode and Non -root mode are

accomplished by adding CPU instructions, such a s VMXON,

VMXOFF.

Growing number of virtualization solution suppliers embrace

hardware assisted virtualization, as hardware assisted

virtualization technique eliminates the OS' ring switch problem and

makes virtualization simpler but requires no modificatio n on OS

kernel. Hardware assisted virtualization is gradually reducing the

differences between various software virtualization techniques and

developing as the trends.

SANGFOR HCI WHITE PAPER

13

vCPU Scheme

Guest is unaware of the physical CPU but aware of the vCPU through

which processing unit is exhibited.

In VMM, every vCPU has a VMCS (Virtual -Machine Control Structure)

where vCPU is switched away from or to the physical CPU and contexts

are saved in or imp orted to the physical CPU. Through that way, vCPUs

are separated from one another.

From VM system õs structure and function separation, we know that

Guest OS and VMM make the two -level scheduling scheme of a virtual

machine system. The following figure shows a VM scheduling scheme in

multi -core environment. Guest OS is in charge of level 2 scheduling, i.e.,

thread or process scheduling on vCPU (core threads being mapped to

the corresponding virtual CPU). VMM is in charge of level 1 scheduling,

i.e., vCPU scheduling on physical CPU. The policy and scheme in the

two levels of scheduling are independent.

 vCPU Scheduling Mechanism

vCPU scheduler allocates and schedules the physical processors among

virtual machines, catering the varied resource needs from all virtual

machines based on specific policy or scheme to schedule physical

SANGFOR HCI WHITE PAPER

14

resources from the perspective of physical processing unit. It could

schedule execution of one or more physical processing units (reused in

differe nt time or locations), or build mapping with one physical

processing unit (to restrain the accessible physical processing units).

Memory Virtualization

 Three-Layer Mode of Memory Virtualization

VMM (VM Monitor) manages all the system resources, includ ing

memory resources, page memory, mappings from virtual addresses to

the guest memory physical addresses. Guest OS itself provides page

memory mana gement mechanism, therefore VMM owns one more

mapping relation than ordinary system:

a. Virtual Address (VA) is the liner space provided for other

application programs by the by Guest OS

b. Physical Address (PA) is abstracted guest physical address

c. Machine Address (MA) is real address

Mapping relation is as follows: Guest OS: PA = f (VA), VMM: MA = g (PA)

VMM manages a set of page tables that contain mappings from physical

SANGFOR HCI WHITE PAPER

15

addresses to machine addresses. Guest OS manages a set of page

tables that contain mappings from virtual addresses to physical

addresses. In operation, user program accesses VA1 that is translated

to PA1 by page table of the Guest OS, and then VMM gets involved and

translates PA1 to MA1 according to the Guest OS page table.

Page Table Virtualization Technique

Conventional MMU translates virtual addresses to physical addresses

only once. However, in v irtualized environment, the so called physical

address is actually not the real machine address. To obtain the real

machine address, VMM must get involved and another mapping is

required. Address mapping is impractical as the efficiency is extremely

low if every memory access by virtual machine requires VMM's

involvement. The most common way to translate virtual address to

machine address is to use VMM to generate mapping fg according the

mapping of f and g, and then write the mapping to MMU. Page table

virtualization technique mainly uses MMU para -virtualization and

shadow page table to accomplish virtualization. The latter has been

replaced by hardware assisted hardware virtualization.

 MMU para -virtualization

For this virtualization technique, the Guest OS will allocate a page

to the new page table when it constructs a new page table, and then

register it at VMM. The VMM de -privileges the Guest OS to write the

page table, since when VMM will intercept traps if guest OS writes

the page table, and verify a nd translate the address. VMM verifies

every item in the page table, making sure they are mapping the

machine pages related to the corresponding virtual machine, not

containing the writable mappings against the page table page.

According to its own mapping s, the VMM translates the physical

addresses to machine addresses, and then load the modified page

table to MMU. By that means, the MMU can translate the virtual

SANGFOR HCI WHITE PAPER

16

addresses to machine addresses.

 Memory hardware assisted virtualization

Working Principle

Working principle

Hardware assisted virtualization of memory is a technique designed

to replace the shadow page table in software virtualization. The

basic working principle is that two address translations are

executed by CPU automatically, from GVA (Gu est Virtualization

Address) to GPA (Guest Physical Address) and to HPA (Host Physical

Address), rather than by software which requires large memory and

is lower in performance. Take VT -x Extended Page Tables (EPT) for

example. VMM first translates the phys ical address of the virtual

machine to EPT page table and sets it to CPU, and then the virtual

machine modifies the guest page table without the VMM's interrupt.

Lastly, when address is being translated, the CPU automatically

finds the two page tables to c omplete translation from virtual

address to machine address.

In conclusion, memory hardware assisted virtualization does not

need VMM's interrupt during guest operation and saves guest OS a

lot workloads, performance is as high as that of a physical machin e.

I/O Device Virtualization

To reuse the limited I/O devices, VMM must virtualize the I/O devices.

This is accomplished by intercepting, trapping and emulating all the

SANGFOR HCI WHITE PAPER

17

I/O operations issued by the guest operating system.

Currently, there are three types of approaches for I/O devices

virtualization, namely Full Emulation of Network Port,

Front -end/Back -end Driver Emulation and Direct Allocation.

 Full emulation of network port

Software mimics the physical port and emulates one that is exactl y

the same with the physical device. Guest OS does not need to be

modified at all to run the virtual machine.

Benefit : It does not need any additional hardware cost as the

existing drivers can be reused .

Drawback : Every operation involves in more than on e registers,

and every access to a register must be intercepted by VMM and

emulated accordingly. For that reason, switching occurs frequently.

What is more, software emulation is generally lower in performance.

 Front -end/ back -end driver emulation

SANGFOR HCI WHITE PAPER

18

VMM provisions simplified drivers (back -end driver and front -end

driver). Guest OS driver is Front -End (FE), which is used to send

request from other modules to back -end driver through the special

communication scheme with Guest OS. Once back -end driver

processes the request, it responds the front -end driver.

Benefit : Such business -based communication scheme can reduce

switching costs to the minimum, and no additional hardware cost is

required.

Drawback : Back -end driver may become bottleneck as Guest OS

needs to accomplish front -end driver.

 Direct allocation

Physical resources are allocated to a specific Guest OS directly.

Guest OS has direct access to the I/O device, without interrupts

from VMM. Some technologies are meant to establish efficient I/O

virtualization channel, such as IOMMU (Intel VT -d, PCI -SIG SR-IOV,

and so on).

Benefit : The existing driver can be reused, and therefore

virtualization cost is reduced due to direct access.

Drawback : It requires additional hardware investment.

2.3.3 aSV Technical Features

 Memory NUMA Technology 2.3.3.1

SANGFOR HCI WHITE PAPER

19

Non-uniform memory access (NUMA) is a new server CPU and memory

design architecture. Under the traditional server architecture, the

memory is put into a single storage pool, which works well for

single -processor or single -core system. However, this traditional way of

universal access will cause resource contention and performance

issues when multi -cores access the memory space at the same time.

After all, CPU should be able to access all of the server me mory, but do

not always remain occupied. In fact, CPU only needs to access the

memory space required by workload when actual run ning .

Therefore, NUMA has changed the way memory presents CPU. This is

achieved by the partition of each CPU memory of the serve r. Each

partition (or memory block) is called NUMA node, and the processor

associated with this partition can access NUMA memory faster, and

does not need to compete with other NUMA nodes for resources on the

server (other memory partitions are allocated to other processors).

The concept of NUMA is associated with cache. Processor speed is

much faster than memory, so the data is always moved to a faster local

cache, where the processor access speed is much faster than the

common memory. In essence, NUMA configures a unique overall

system cache for each processor, reducing contention and delay when

multi -processor s tr y to access a unified memory space.

NUMA is fully compatible with server virtualization, and can also

support any processor to access any piec e of memory space on the

server. Of course, a processor can access the memory data located on

different areas, but it requires more than the transmission of the local

NUMA node, and requires the confirmation of target NUMA node. This

increases the overall costs and affects the performance of the CPU and

memory subsystem.

There are no compatibility issues when NUMA load virtual machine , but

in theory the perfect way of virtual machine should be within a NUMA

SANGFOR HCI WHITE PAPER

20

node. This prevents the processor from needing to interact with other

NUMA nodes, which result s in the decrease of workload performance.

Sangfor aSV support NUMA technology, making the hypervisor and

upper OS memory interconnect, so that OS would not migrate

workloads between the CPU and NUMA node.

 SR-IOV 2.3.3.2

Typically the technologies for server virtualization satisfy the I/O

requirements of virtual machines by software simulation sharing and a

physical port of virtualization network adapter. The multiple layers of

simulation make I/O decisions softw are for virtual machines , leading to

envir onment bottlenecks and affecting I/ O performance. SR -IOV

provided by aSV virtualization platform is a method which can share

the physical features of I/O device and I/O ports without software

simulation , main ly utilizing iNIC to achieve bridge unmount the virtual

card and allow ing to allocate the SR-IOV virtual function of physical

network adapter directly to virtual machine s. Therefore, SR -IOV can

improve network throughput, reduce network latency, and reduce t he

required host CPU overhead to handle network traffic .

Technical Principle : SR-IOV (Single Root I/ O Virtualization) is a

standard launched by PCI-SIG, is a technical realization of the virtual

channel (virtualize multiple physical channels for the upper -layer

software systems on the physical NIC , each with independent I/ O

functions) , and is used to virtualize a PCIe device into multiple virtual

PCIe devices, with each device provides the same services to the upper

layer software as a physical PCIe device do. Through SR-IOV, a PCIe

device can export not only multiple PCI physical functions, but also a

set of virtual functions of the resources shared on the I/ O device . Each

virtual function can be assigned directly to a virtual machine, allowing

network tra nsmission to bypass the software emulation layer and be

SANGFOR HCI WHITE PAPER

21

directly assigned to a virtual machine , therefore achieves the object of

assigning the PCI function to multiple virtual interfaces to share a PCI

device in the virtual environment and reduc es the I/O overhead of

software simulation layer , so as to achieve a near -native performance.

As shown in the figure , no transparent transmission is needed in this

model, because virtualization occurs on the terminal device, allowing

the management program to simp ly map virtual functions to the VM to

achieve the device performance and isolation safety of native machine .

The channels virtualized by SR-IOV include two types:

 PF (Physical Function) is a complete PCIe device that contains a

comprehensive management and configuration capabilities .

Hypervisor uses PF to manage and configure all I / O resources

of the NIC.

 VF (Virtual Funciton) is a simplified PCIe device which contains

only I/O functions. VF is derived from PF and appears to be a

slice of physical NIC hardware resources . For Hypervisor, this

VF is exactly the same as an ordinary PCIe card.

By using SR-IOV, we can meet high netw ork IO application

requirements, without hav ing to install special drivers and affecting hot

migration, memory multiplexing, virtual machine network control and

other virtualization features .

 Faik -RAID 2.3.3.3

Under normal circumstances, when the host system has more than one

hard disk, it is often considered as first option to improve disk

performance or provide disk redundanc y by form ing Raid. Today's

mainstream raid implementations can be broadly divided into three

types:

 Hardware raid (hardware raid): achieve d by purchasing

SANGFOR HCI WHITE PAPER

22

expensive raid card.

 Software raid (software raid): c reate an array through the

operating system software, and CPU is responsible for the

processing overhead of raid.

 Motherboard raid (fake raid): creat e arrays through building

raid controller with in the motherboard, which is identified by

the operating system drivers .

With respect to the expensiv e hardware, motherboard raid (fake raid)

would be a good choice for us. Fake raid only provides cheap controller,

and raid CPU processing overhead is still handled by CPU , so the

performance and CPU usage are basically about the same with software

raid.

aSV 3.7 incorporates support for Fake -RAID installation and use of

Fake -RAID storage . Now Intel mode raid0, raid1, raid5, raid10, and LSI

model raid0 can all be used on aSV 3.7 .

 Life Cycle Management of Virtual Ma chines 2.3.3.4

aSV provides a comprehensive management of the entire process of

virtual machines from creation to deletion. Just like the human life

cycle, the basic life cycle of virtual machine is three states: creat ion, use

and delet ion . Of course it also inclu des the following states:

 Create VM

 VM power on and power off, reboot and suspend

 Operating system installation on VM

 Create template

 Update VM hardware configuration

SANGFOR HCI WHITE PAPER

23

 Migrate VM or VMõs storage resource

 Analyze the resource utilization of VM

 Backup VM

 Restore VM

 Delete VM

In the life cycle of a virtual machine, it may experience these states at a

certain time point. aSV provides complete virtual machine lifecycle

management tools, through which we can plan on a virtual machine

lifecycle and maxim ize the role of the virtual machine.

 VM Hot Migration 2.3.3.5

In virtualized environment, physical servers and storage carry much

more business and data; therefore can suffer more from equipment

failure. aSV virtualization platform provides virtual machine h ot

migration technology to reduce the risk of downtime and business

interruption time.

aSV virtual machine hot migration technology refers to migrate a virtual

machine from one physical server to another physical server, namely

virtual machine save/ restor e. First, the overall state of the virtual

machine is preserved intact, and can be quickly restored to the target

hardware platform, whereas the virtual machine is still operating

smoothly after recovery and the user will not notice any difference.

Virtual machine hot migration technology is mainly used for dual

fault -tolerant, load balancing, energy saving and other scenarios. aSV

virtualization platform hot migration provides memory compression

technology to double hot migration efficiency and suppo rt up to four

concurrent virtual machines to migrate.

SANGFOR HCI WHITE PAPER

24

Values:

 In the maintenance process, migrate application to another

server manually through hot migration, and then migrate back

after maintenance. In the meantime, the application would not

stop, thus reduce planned downtime.

 Combine with dynamic resource scheduling strategies. For

instance, when the virtual machinesõ load is reduced at night, it

will automatically migrate virtual machines to concentrate to

part of the servers through pre configuration to reduce the

number of running servers, thus reduce energy expenditures on

equipment operation.

2.3.4 aSV Special Technologies

 Fast Physical Machine Virtualization 2.3.4.1

In actual IT infrastructure virtualization, migrating Windows based

application system to a virtualized environment is an inevitable

requirement. Instead of using conventional P2V or V2V tools to convert

physical machines to virtual machines, Sangfor uses fast conversion

tool to convert Windows servers, integrated with inno vative conversion

technology.

The following introduce s the principle of P2V conversion: On a Windows

computer to be converted, a virtual disk file will be created in a physical

sector and protected by Windows driver to ensure that the physical

sector will not be moved; and information of that physical sector will be

obtained and saved to the system configuration file; then boot program

and kernel of Sangfor HCI will be installed, and a boot item will be

added to the system so that the computer can boot from the operating

SANGFOR HCI WHITE PAPER

25

system of Sangfor HCI . When data is read from or written to the virtual

disk on Sangfor HCI platform, the virtual disk driver will read data from

or write data to the physical sector where that virtual disk file is stored.

When t he computer enters operating system of Sangfor HCI again, that

piece of data can still be read and written.

With Sangfor Converter, physical machines could be quickly converted

to virtual machines and hypervisor created on those physical servers.

 High Availability 2.3.4.2

High Availability is HA for short. If HA is enabled on a virtual machine,

that virtual machine will be migrated to another node in case that

network cable is dropped or storage is inaccessible, etc., so as to ensure

service continuity.

Virtual machine status will be checked every 5 seconds. Once any fault

occurs, that virtual machine will be migrated to another node.

SANGFOR HCI WHITE PAPER

26

HA will be triggered if any of the following occurs:

 It has been detected three times that the physical NIC on the

node that a virtual machine is running on is unplugged

(exclusive of the situation with NIC disabled)

 It has been detected twice that the node on which the virtual

machine is running cannot access the data store of that VM.

With use of HA, downtime due to node or link failures could be reduced

greatly.

 Resource Scheduling 2.3.4.3

In virtualization environment, if a business system is installed on a

virtual machine that runs on a node without enough available

resources, resource needs of that VM may n ot be met, which may affect

performance of that business system.

With help of resource scheduling, resource distribution could be

automatically balanced among nodes. If a virtual machine runs low on

resources, it could be migrated to another node with more available

resources so as to ensure all applications on it operate properly.

With resource scheduling enabled, it is possible to run lots of virtual

machines that require a high CPU and memory usage, such as a

virtualized database server, since resources could be automatically

scheduled among nodes, which can greatly reduce operational costs.

When a virtual machine lacks resources, resource scheduling

performs virtual machine migration based on migration -triggering rule,

and CPU and memory usage of cluster ed hosts monitored regularly

using host heartbeat mechanism. Then, that VM may be migrated to

another node with more available resources, or other VMs may be

SANGFOR HCI WHITE PAPER

27

migrated to another node.

 Multiple USB Devices Mapping 2.3.4.4

If an application on a physical se rver, such as Kingdee, needs to be

encrypted via a USB key, the USB key should be plugged into that

server after the server is virtualized, and mapped to that virtualized

server. More requirements may include mapping during hot migration

and migration across hosts

Currently, there are three solutions available:

 Host mapping: This solution do es not support network mapping.

Therefore, hot migration cannot be supported.

 Anywhere USB: This solution utilizes an IP -based intermediate

device, installs driver on the virtual machine and configures

peer device.

 Hardware virtualization and proxy: This solution supports

network mapping and hot migration w ithout any changes to the

guest OS. When a physical machine is converted to a virtual

machine, the VM can directly read data from and write data to a

USB device mapped to that VM. This solution eliminates the

drawbacks of other two solutions and the proble m of using USB

device in virtualization environment.

How hot migration is implemented: Since the communication between a

virtual machine and USB device is over network, a message will be sent

to tell USB service program to cha nge IP address of the destination node

when the virtual machine is migrated to another node, and then a

connection to the new destination node will be initiated. Once the new

connection is established successfully, the communication with USB

SANGFOR HCI WHITE PAPER

28

device will be recovered, which is transparent to the virtual machine.

Sangfor HCI platform utilizes the third solution which supports

mapping multiple USB devices and provides the following benefits:

 Give prompt once a USB device is detected.

 There is no need to i nstall any plugins on virtual machines.

 Support mapping USB device across nodes and hot migration so

as to accommodate cluster environment.

 Automatically mount previously -mapped USB device to virtual

machine after migration.

 Provide a virtual device fu nctioning like a USB Hub, which

works with Sangfor HCI platform for establishing a USB device

mapping environment.

 Re-map USB device to the virtual machine when it recovers from

failure, such as reboot due to fault occurrence, or network

connection er ror on the node to whi ch that USB device is

attached.

2.4 aSAN (Storage Area Network)

2.4.1 Storage Virtualization Overview

 Challenges for Storage after Virtualization 2.4.1.1

By utilizing virtualization technology, utilization of resou rces on servers

becomes higher, business system becomes easier to be deployed and

total cost of ownership (TCO) becomes lower as well, but challenges

come along.

Compared with traditional solution using physical servers, a storage

SANGFOR HCI WHITE PAPER

29

system serves more servi ces and therefore requires a higher

performance.

With use of shared storage, tens or hundreds of virtual machines may

run on a volume, leading to random characteristics on volume IO,

which is a challenge to traditional Cache technology.

To make more than o ne virtual machines run on a same volume,

storage system must be able to coordinate access requests from those

virtual machines, ensuring that virtual machine with a high IO

throughput can access resources preferentially.

It requires a high IO performance to support virtual machines running

on a same volume, which is also a challenge to the traditional solution

using RAID technology.

 Development of Distributed Storage Technology 2.4.1.2

Typical distributed storage generally falls into the following types:

file -based storage, object -based storage and block -based storage.

Distributed storage technology becomes mature and is widely used in IT

industry, which is proved by Server SAN and other related products.

For example, use of distributed storage tech is app lied to search engine

and public cloud, since it has the following benefits:

 High performance : Data is distributed among servers so as to

achieve load balancing.

 High reliability: A single point of failure (SPOF) no longer exists

in the cluster, since mul tiple copies of data could be configured

as needed and stored on different servers, hard disks and nodes

on different racks. Thus, service will not be interrupted even

though one node fails, because the copy of data on that failed

node can be automatically reconstructed.

SANGFOR HCI WHITE PAPER

30

 High scalability: Storage node can be increased linearly

without limit to storage capability.

 Simple management: Storage software is directly deployed on

servers and no dedicated physical storage device is required.

Whatõs more, storage can be easily configured, managed and

maintained via web -based access.

 Overview of Sangfor aSAN 2.4.1.3

aSAN is a distributed storage solution provided by Sangfor to meet

requirements of storage virtualization and a critical component of

hyper -converged infra structure . It is developed based on the

distributed file system GlusterFS and designed for cloud computing

environment. Additionally, it is integrated with other features, such as

distributed cache, SSD read/write caching, data redundancy and auto

data rec onstruction after fault occurrence, etc., which meets storage

requirements of crucial services and ensures that services operate

steadily, reliably and efficiently.

2.4.2 aSAN Working Principle

ll the hard disks in the cluster are managed by aSAN running on

hypervisor, with help of host and disk management, storage area

network, caching and data redundancy techniques. aSAN pools storage

provided by hard disks in the cluster and provides an interface to

Sangfor HCI so that virtual machines can save, ma nage, write data to

and read data from the storage pool.

 Node Management 2.4.2.1

Since aSAN needs to gather information of nodes in the cluster, the

cluster must be created before establishing aSAN. Therefore, there

must be at least two nodes in aSAN envi ronment.

 Data Copy 2.4.2.2

A

SANGFOR HCI WHITE PAPER

31

Gaining some knowledge about data copy technique is necessary before

reading the next section on disk management and data copy

configuration.

Data copy technique is used to store a same piece of data on multiple

storage. Sangf or aSAN replicates data on file basis. For example, file A

has two copies, i.e., that file is saved on both disk 1 and disk 2

simultaneously. The two copies of file A are always the same as long as

failure does not occur .

Characteristics of data copy technique :

Available space of storage pool = (capacity of all HDDs in cluster) /

(number of copies) (for the situation that all disks are of the same

capacity). Therefore, available storage space becomes less when

number of copies increases.

Guest OS is unaware of copies of file. Disk management and copies of

file distribution are handled by virtual storage. Note that aSAN

replicates data on file basis.

Copies of file are always the same as long as no failure occurs. Therefore,

there is n o primary copy of file and secondary copy of file.

If any change is made to file A, which will be synchronized to the two

copies of that file. For example, a piece of data is written to file A, which

will also be written to the two copies of that file. Ho wever, a piece of data

SANGFOR HCI WHITE PAPER

32

is read from one of the two copies of the file A.

 Disk Management 2.4.2.3

The policy of how to group disks is determined by aSAN disk

management service based on number of nodes in the cluster and the

number of copies of data specifi ed during aSAN initialization.

aSAN disk management is provisioned in a multi -node cluster

environment where each piece of data owns two or three copies stored

on different nodes, to ensure data integrity in case of node failure. As

data copy is across nod es, the algorithm for grouping data volume

copies is the key.

Take the example of the scenario in the following diagram. In this

scenario, there are two nodes with three disks on each node. And two

copies of data are built across the two nodes.

When building two copies of data on the two nodes, disks on the nodes

will be appropriately grouped to form three replicated volumes. The

corresponding logical view is as shown below:

SANGFOR HCI WHITE PAPER

33

There is no essential difference between the diagram of the two nodes

mentioned before and the diagram above. The only difference is that

volume copies on physical disks are distributed to different nodes.

 SSD Read Caching 2.4.2.4

In aSAN, a storage area network, SSD will be used for caching by

default.

There ar e concepts of aSAN client and server. aSAN server handles disk

IO requests, while aSAN client provides interface to virtual machines for

accessing storage, such as a mount point. SSD read cache operates on

aSAN client, while SSD write cache operates on aSA N server. The

corresponding logical view is as shown below:

SANGFOR HCI WHITE PAPER

34

The following diagram simplifies the above logic view so that the

principle of SSD read caching can be easily understood.

On SSD read cache, data are cached on block basis, rather t han file

basis. For example, there are three files: A, B, C. Only the data block

which has ever been read will be cached in the corresponding files

respectively.

SSD read cache module is between file access module and aSAN server.

Therefore, all the SSD IO requests will go through and be handled by

that read cache. The following introduce how file is read for the first

time and for the second time respectively, and how the file is written.

Reading File for the First Time

SANGFOR HCI WHITE PAPER

35

The following illustrate how the data that has never been cached is read

for the first time:

 If the data block [A1, A2] of file A is requested, the read request

is sent to SSD read cache module. Since the data is requested

for the first time, it is not in the cache. Then, the req uest is

passed to aSAN server.

 aSAN server responds to the request with the data block [A1,

A2].

 The data block is returned to read cache module.

 This step consists of two other steps: 4.1 and 4.2. Returned data

block goes through read cache module, it w ill be copied and

saved to SSD, and a corresponding index will be created for this

data block. This is Step 4.1. That data block will be returned to

file access module simultaneously. This is Step 4.2. Step 4.1

and 4.2 are executed at the same time. Theref ore, cache

operation will not affect the read operation.

 The data block [A1, A2] is saved to SSD. If that data block is read

again, it will be directly read from the SSD.

Reading File for the Second Time

SANGFOR HCI WHITE PAPER

36

The following illustrate how the data block that has ever been cached is

read (assume that the data block [A1, A2] is cached to SSD):

 If the data block [A1, A2] of file A is requested, the read request

is sent to the read cache module.

 Since this data block [A1, A2] is in the cache, the read cache

module will initiate a read request to SSD to read that data

block [A1, A2] .

 The data block is read from SSD and returned to the read cache

module.

 The read cache module returns the data block to file access

module.

Therefore , aSAN client can direc tly return the cached data block [A1, A2]

to file access module without communicating with aSAN server, which

reduces latency and IO workload of HDD.

Writing File

To make the data in the read cache consistent with that on physical

disks, a corresponding operation (such as update) will be executed by

the read cache module while data is written to the physical disks.

The operation executed by read cache module is based on the principle

that the recently written data is most likely to be read recently. For

example, a certain file is uploaded to FTP server and will be most likely

to be read in the near future.

The operation executed by read cache module for write operation falls

into the following: writing data to SSD read cache, updating data in

SSD reach cac he.

1) Writing data to SSD read cache for the first write operation

SANGFOR HCI WHITE PAPER

37

Following are illustration to the first write process, as shown in the

figure above (assume that the data block [A1, A2] is written for the first

time):

 The write request is transmit ted through SSD read cache

module, then passed to the aSAN server directly since it is a

write request.

 The request is passed to the server and then data is written to

HDD. After the write operation is complete, a result will be

returned.

 The result is t ransmitted through the read cache module. If the

result indicates the write operation is successful, it goes to Step

4; if it indicates the write operation is failed, the result will be

directly returned to file access module without going to Step 4.

 This step consists of two other steps: 4.1 and 4.2. The data

block [A1, A2] will be copied and saved to SSD by the read cache

module, and a corresponding index will be created for this data

block as well. This is Step 4.1. The result of the write operation

will be returned to the file access module simultaneously. This

is Step 4.2. Step 4.1 and 4.2 are executed at the same time.

SANGFOR HCI WHITE PAPER

38

Therefore, cache operation will not affect the write operation.

Thus, the data block [A1, A2] is saved to SSD. The process of

subsequen t access to the data block is the same as that of reading file

for the second time, speeding up data access.

2) Updating SSD read cache for the second write operation

Read cache module will update the data block which has been cached

when it is written again.

Assume that the data block [A1, A2] has been cached and a virtual

machine initiates a write request (such as update) to that data block.

 The write request is transmitted through read cache module,

and then passed to the aSAN server directly, sin ce it is a write

request.

 The request is passed to the server and then data is written to

HDD. After the write operation is complete, a result will be

returned.

 The result is transmitted through the read cache module. If the

result indicates the write oper ation is successful, it goes to Step

4; if it indicates the write operation is failed, the result will be

SANGFOR HCI WHITE PAPER

39

directly returned to file access module without going to Step 4.

 This step consists of two other steps: 4.1 and 4.2. The data

block [A1, A2] will be c opied and saved to SSD by the read cache

module, and a corresponding index will be created for this data

block as well. This is Step 4.1. And the result of the write

operation will be returned to file access module simultaneously.

This is Step 4.2. Step 4. 1 and 4.2 are executed at the same time.

Therefore, the cache operation does not cause any delay to the

write operation.

 SSD Write Caching 2.4.2.5

SSD wri te caching operates on aSAN server and is supported since

version aSAN2.0. Therefore, there is a write cache on each copy of data,

i.e., SSD write cache has multiple copies as well. If an SSD fails, data

security can be guaranteed with help of copies of wr ite cache.

SDD Write Cache

SDD write caching is implemented by adding an SSD write cache on

HDD, as shown in the diagram below:

SANGFOR HCI WHITE PAPER

40

Data stream flowing into and out of SSD write cache falls into two types

(blue and red). The two types of data r un simultaneously. The blue data

stream indicates a virtual machine is writing data to SSD write cache,

while the red data stream indicates data is being read from SSD write

cache and then written to HDD. The following are the illustration of the

diagram a bove:

 SSD write cache module receives a write request from a virtual

machine.

 The write cache module writes data to SSD and obtains a value

returned from SSD.

 If data is written to SSD successfully, the write cache module

will send acknowledge ment to that virtual machine that the data

has been written successfully.

 When the data cached on SSD reaches a certain amount, part of

data will be read from SSD and then written to HDD by the write

cache module.

Step 4 and 5 run automatically in background and will not affect

execution of Step 1, 2 and 3.

SSD Write Cache Hit

Writing data to HDD from SSD is trigg ered only when data on SSD

reaches a certain amount . If there is a read request, SSD write cache

will check whether the requested data is in the write cache. If the data is

SANGFOR HCI WHITE PAPER

41

in the write cache (called a òcache hitó), it will be returned by SSD write

cache; if it is not in the cache (called a òcache missó), it will be returned

from HDD.

Illustration of the diagram above:

 A virtual machine initiates a read request.

 SSD write cache checks whether the requested data is in the

cache

 If cache hit occurs, the req uested data will be returned by SSD

write cache. Otherwise, cache miss occurs and requested data

will be returned from HDD.

 Return the requested data to the virtual machine.

Handling of Full SSD Write Cache

If virtual machines write data to SSD continu ously, SSD will get full and

then the write speed of virtual machines may be as slow as the speed of

data written to HDD from SSD.

SANGFOR HCI WHITE PAPER

42

If SSD is full , write speed will be equal to or slower than the speed of

data written to HDD from SSD. So is the situation with virtual

machines. If such case often occurs, it indicates that SSD space is

insufficient and needs to be increased to ensure I/O write performance.

Handling of Failed or Offline SSD

As mentioned before, SSD write cache operates on aSAN se rver and has

multiple copies. When an SSD fails, data will not get lost as long as

other SSDs on which copies of data are located operate properly. If an

SSD has been offline for over 10 minutes, data on that SSD becomes

invalid and then the copies of data on it will be repaired. That is to say,

if SSD is unplugged by mistake, it must be plugged in 10 minutes,

otherwise, all the data copies on it will be reconstructed.

2.4.3 aSAN Storage Data Reliability Safeguard

 Disk Failure Handling 2.4.3.1

In case of di sk failure, if network operator fails to fix the issue in

specified period of time, aSAN will start to reconstruct the data on

another disk, to ensure overall data integrity and reliability. That is also

when spare disk is involved.

Spare disks are disks d efined automatically for global use in the cluster

when aSAN initializes the storage. It is not necessary that every node is

assigned a spare disk. Spare disk is an unused online disk and not in

replicated volume. Thus, spare disk capacity will not be mapp ed to

